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The assumption of a sharp temperature change is only justi-
fiable, however, when the gage is not very small.

This analysis confirms the importance of measuring only
the initial response of a calorimeter gage whose thermal prop-
erties differ considerably from those of the mounting surface.
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Limits on the Damping of Two-Body
Gravitationally Oriented Satellites

E. E. ZAJAC*
Bell Telephone Laboratories, Inc., Murray Hill, N. J.

This paper considers the conjecture that the
settling time of a strictly gravity-gradient attitude
control system is limited to be of the order of the
settling time of a critically damped dumbbell.
The conjecture is shown to be true for a certain class
of gravity-gradient systems and, in particular, for
the gravity-gradient systems thus far proposed.
It also is shown that gravity-gradient systems out-
side this class may have arbitrarily fast settling
times. However, it is suggested that reliable
mechanization of such rapidly settling systems may
be difficult.

I. Introduction

IN a previous paper,1 the author considered the small mo-
tion damping of a two-body gravitationally oriented

satellite of the type proposed by Kamm.3 It was pointed out
that this was one of several passive or semipassive gravita-
tional schemes being considered for very reliable, long-life
satellites. The common feature of all the schemes is an
auxiliary inertia, either a gyro or a second rigid body, which is
attached to the satellite through a dissipative joint.

For the satellite considered in Ref. 1, a bound was found on
the pitch "as}anptotic settling time," that is, the 1/e settling
time of the most lightly damped mode. This was found to
be S1/4/^^)1/2 = 0.137 orbits. In this satellite, only a
simple spring-dashpot combination was assumed between
the two inertias. One immediately thinks of improving the
settling time by the use of more sophisticated control, say
by employing feedback. On the other hand, the bound on
the 1/e pitch asymptotic settling time of the roll-vee gyro
system of Refs. 3 and 4 is l/(2ir) = 0.159 orbits—of the same
order as that of the system in Ref. 1. One might conjecture
that a natural bound of this order of magnitude generally ex-
ists for purely gravity-gradient schemes.

For example, suppose that the auxiliary inertia is a second
rigid body. The satellite is desired stable with respect to a
rotating, earth-pointing reference frame. In this frame, the

satellite's natural frequency can be no higher than (3)1/20
(0 is the orbital frequency), corresponding to the natural
frequency of a dumbbell-shaped body. Likewise, the natural
frequency of any auxiliary fluid or rigid body inertia system
also is less than (3)1/2 12, and so the basic system one starts
with has the lumped representation shown in Fig. 1, with two
inertia systems of limited frequencies. (For convenience, a
lineal rather than a rotatory model is shown.) Only if the
satellite grabs onto the rotating, earth-pointing reference
frame by some means other than gravity gradient can these
frequencies be raised. One now provides torques between
the inertias to damp the system as rapidly as possible.
However, these torques are applied only between the inertias.
It would seem likely, therefore, that the limited natural
frequencies of the satellite and the auxiliary inertia would set
the time scale of the oscillation. One thus might conjecture
that it would be difficult to attain settling times much faster
than l/[27r(3)1/2] = 0.092 orbits, corresponding to the most
rapid (critical) damping of a single-degrea-of-freedom system
with the limiting natural frequency of (3)1 /20.

It is shown in this , paper that the conjecture is true for a
certain class of linear systems. Systems in this class have
resistive velocity-dependent torques (as denned in the next
section). In addition, torques proportional to the bodies7

displacements are applied between the inertias. For example,
all systems with a single, viscous damper and displacement
proportional torques between the inertias fall within this
class. The class includes, in particular, all the gravity-
gradient schemes considered in Refs. 1, 2, and 5. The
compliant dumbbell analyzed by Paul6 is not of this class.
However, by the methods presented, the conjecture easily is
shown to hold for PauPs system as well. The conjecture
thus, in fact, is true for all the gravity-gradient schemes
proposed in Refs. 1-6.

Hence, to obtain a two-body gravity-gradient satellite
that damps down substantially faster than these proposed
sj^stems, one must search outside the class for which the
conjecture holds. Indeed, as shown in this paper by an
example, it is possible to attain arbitrarily fast settling times
outside of this class. However, the system shown in this
paper to have arbitrarily rapid settling times also is shown to
be intolerably sensitive to changes in system parameters.
It goes without saying that the mechanization of any practical
damping system must be reliably long-life so as not to negate
the basic gravity-gradient reliability. Whether this is pos-
sible for a system outside the class considered is an open
question.

II. Systems for Which the Conjecture Holds

Fourth-order system-
Consider the system shown in Fig. 1. This is a schematic

of the pitch motion of a two-body, gravity-gradient system.
The bodies A\ and A>2 are assumed linked at their mass
centers f so that the gravity-gradient spring, ki = 3(Bi —
<7i)122, acts between the satellite of inertia AI and ground of
the rotating reference frame. (Bi and Ci are principal
inertias of the satellite.) Likewise, the gravity-gradient
spring &2 = 3(B2 — 0%) 12 2 acts between the auxiliary inertia
and ground. Let a torque T that is a linear function of the
velocities and displacements act between the inertias AI and
A2:

T = — a2g2 + ciqi — c2#2

Depending on the values of ai, a2, ci; and c2, this form of the
torque can represent a variety of mechanizations. For
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t As indicated in a footnote of Ref. 1, if the mass centers are
noncoincident as in Kamm's vertistat, only a trivial change in the
differential equations occurs. In the present case, this does not
affect the results obtained.
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Fig. 1 Lineal lumped model of a two-body, gravity-
gradient satellite (all inertias, springs, etc. are rotatory in

the actual system)

example, some possibilities are:

1) ci = c2 = c, viscous damper between A\ and Az.
2) «i = a2 = k, spring of spring rate k between AI and A2.
3) 0,1 = k, a* = 0, the satellite displacement is sensed and

fed back between AI and A2 as a torque.
4) 0,1 = kf + kg, 0,2 = kg) combination of 2 and 3.

The differential equations of motion for the system of
Fig. 1 are

A2q2

= — (dqi — c2q2) —

= (ciqi — c2q2) + (a — a2q2)
(1)

Substituting qi = Qiept, q2 = Qept into these equations and
setting the resulting determinant to zero, one obtains the
characteristic equation of the system :

(fe + a2) X
Ai]p*'+ fofe + cMp + fefe + a* + aife = 0 (2)

Here fe and fe are the gravity-gradient springs :

k, = 3(5! - d)Q2 fr2 = 3(B2 - C2)Q2

Consider first the case when all of the coefficients of pn

in Eq. (2) are nonzero and positive. Let the farthest right
roots of Eq. (2) occur on the line Re p = — D. In Ref. 7
it is shown that, for a real polynomial with positive co-
efficients and negative real roots

pn + aipn~l

the following bound holds :
an = 0

-* <
WOO (m > k) (3)

Applying this inequality to the coefficients of p3 and p,
one gets

D* < ——~— A* c^ ——— (4)

On the other hand, the moments of inertia of a rigid body
have the well-known property that the sum of two principal
inertias is greater than the third:

B i - d < A

A2 + C2 > B2

-D2 — C2 < A2 (5)

Consider the case ci > 0, c2 > 0. [Since the coefficients of
(2) are assumed nonzero, Ci = c2 = 0 is excluded.] This
corresponds to velocity-dependent torques applied between
the bodies which are resistive in the sense that the torque
— ciqi then opposes the motion of body 1 and the torque
— c2q2 opposes the motion of body 2. In this case it follows
immediately from (5) and (4) that

D < (S)1/2^ (6)
Hence, the asymptotic decay rate D of systems within this

class is bounded by the natural frequency of a dumbbell-
shaped body. Likewise, the asymptotic settling time, ts' =
ti/2-jrD, is bounded by ts = 1 [2?r (3) J/2] orbits, and the conjec-
ture is true.

It easily is verified that bound (6) is achieved if ci/Ai ='
0, c2/A2 = 4(3) ̂ ft, ai/Ai = 602, a2/A2 = 12Q2, feMi = 302,
and fe/^2 = — 302. However, it also easily is shown that the
bound is not attainable if the only velocity-dependent
torques are from a viscous damper.

Note that the attainable bound of the two-body system
considered in Ref. 1, consisting only of a linear spring and
dashpot between the bodies, is D = (S)1/2^/®1/4 = 0.67 X
(S)1/2^. Hence, at best, a more sophisticated feedback
control in this class of systems may increase from D = 0.67
X 3J/20 to 3!/20.

Degenerate third-order system

If k2 = a2 = 0, Eq. (2) is seen to degenerate; one of the
roots becomes p = 0, and the others are the roots of a cubic.
The root p = 0 implies that 1) the second body is in equi-
librium at an arbitrary position, and 2) a constant torque
applied to either body results in a constant velocity of the
second body. When the second body is a fluid or solid
flywheel as considered in Ref . 5, probably neither 1 nor 2 is a
drawback, and the positions of the remaining, nonzero roots
determine the decay rate. These are given b3^ the roots of

(kiA2 + aiA2)p + c2ki = 0 (7)
Applying inequality (3) to the constant term and the co-
efficient of p2, one finds

(8)cLA2

If it again is required that ci > 0, c2 > 0, then (8) together
with the restriction ki < 3&2Ai results in

D < 312 (9)
This is higher by a factor of 31/2 than the bound (6) for the
nondegenerate system but still of the order of the orbital rate.

It easily is verified that bound (9) is attained when c\ = 0,
= 9fi, ai/Ai = 24122, and ki = 302.

III. System of Arbitrarily Rapid Decay Rate

The decay rate may be made arbitrarily large if the re-
striction to resistive velocity-dependent torques is removed.
Consider the case of two crossed dumbbells, for which ki =
3122^i, k2 = -312M2. Suppose that Eq. (2) has a fourfold
negative real root at p = —D. The coefficients of (2) are
then in the ratio 1:4Z>:6Z>2:4Z>3:D4. From this it follows
that

=2D[l - (D2/3^2)]
C2/A2 = 2D[l + (£>2/3122)]

a2/A2 =
- 3122]
+ 3122]

(10)

As D —> oo, each of the parameter ratios of Eqs. (10)
becomes infinite in magnitude. This means that for large D
the system is extremely sensitive to changes in parameter
values. For example, suppose for a given D that Ci/Ai.is in
error by e. Then the coefficient of p3 in the characteristic
Eq. (2) would be

4+!.)]
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If for e = 0.01 the system were designed to attain D = 3012,
then one would have CiA2 + c2Ai = 2Z)AiA2[2 — 0.01 X
299] < 0. Hence, a 1% error in this case would give a
negative coefficient of p3 and an unstable system.
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Exhaustion of Geomagnetically
Trapped Radiation

SYLVAN RTJBIN* AND ARYEH H. SAMUEL^
Stanford Research Institute, Menlo Park, Calif.

THE amount of matter which must be injected into belts
of geomagnetic ally trapped radiation in order to lower the

radiation levels has been estimated. Two mechanisms are
available for this purpose: the elastic scattering of particles
into paths which will intersect the atmosphere before mirror-
ing, and the removal of the particles' energy by ionization and
excitation (i.e., the normal stopping power of matter).

The latter is easier to estimate. A particle of velocity
v (cm/sec) has a path length of m(g/cm2) in matter that is
relatively independent of the stopping material. If a time
t (sec) is allowed to stop it, the density of matter in the radia-
tion belt must be m/vt (g/cm3). For a belt of volume V
(cm3), one therefore must orbit a total mass M = Vm/vt (g).

For the artificial radiation belt produced by recent nuclear
tests, one may assume that the main component is electrons of
approximately 1 Mev, so that m can be taken as 0.5 g/cm2

and v as 3 X 101C cm/sec. The belt volume is about 1026

cm3, and one obtains Mt = 1.7 X 1015 g-sec or about 50
ton-yr.

For the protons of the inner Van Alien belt, m and V are
slightly larger and v is slightly less, so that Mt is of the order
of 300 ton-yr. Here, however, there is an upper limit on t
which is given by the average natural residence time of the
protons, which so far is unknown. The persistence of the
artificial belt in a region of low natural radiation intensity
suggests that residence times may be much longer and natural
injection rates much lower than hitherto has been supposed.
If this is so, a permanent reduction of radiation levels could
be achieved in due course by the introduction of feasible
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amounts of matter. The reduction would proceed until
particle concentrations are so low that the removal rate
(natural and artificial) equals the arrival rate.

For the outer Van Alien belt, the values of m and v are
comparable to those for the artificial belt, but V is con-
siderably greater, so that Mt here is also of the order of 300
ton-yr. Again the maximum value of t is unknown.

In order to scatter trapped particles out of the belts, they
must be deflected into a narrow cone along the magnetic lines
of force. It is assumed that it would require at least 10
collisions of more than 10° each to effect this for the average
belt particle. The number of atoms per cubic centimeter,
N, which is required to produce this scattering in t sec is
given by Navt = 10, where a is the cross section for elastic
scattering of the belt particles through an angle of 10° or
more. The cross section can be calculated from the Coulomb
scattering law.1 For 1 Mev electrons scattered off a material
with an average atomic number of 3 (e.g., a hydrocarbon), one
obtains a= 2 X 10~23 cm2. This gives Nt = 1.7 X 1014 sec
X particles/cm3 or, taking a belt volume of 1026 cm3 and an
average atomic weight of 5, Mt = 450 ton-yr. This is
therefore a less efficient exhaustion mechanism than energy
removal.

The cross section for elastic scattering is inversely propor-
tional to the square of the particle kinetic energy. The elastic
scattering mechanism is therefore even less efficient for the
highly energetic particles of the inner Van Alien belt, when
compared to the energy removal mechanism which is most
efficient for heavy particles. In the outer Van Alien belt, the
ratio of efficiencies for the two mechanisms is comparable to
that in the artificial belt.

It should be noted that, because of the strong energy de-
pendence of <T, the relative efficiency of the scattering process
increases as the particle energy goes down. The two mecha-
nisms therefore reinforce each other. Some consequences of
these calculations are as follows.

It does not seem desirable or quite possible at present to
orbit matter with the exclusive or primary purpose of remov-
ing the artificial or natural radiation belts. Objects already
in orbit are performing this function rather slowly and in-
efficiently, since their configuration is not optimal for this
purpose. With the future establishment of space stations on
orbits intersecting the belts, it may become very desirable to
sweep the belts out in the manner indicated. The space sta-
tions themselves would not be good for this purpose because
of the personnel radiation doses that would be absorbed from
bremsstrahlung.

The choice of material for a sweepout program is not par-
ticularly critical, but the physical state is quite important.
A gas would dissipate too rapidly, whereas solid particles in
the micron to centimeter size range would increase unduly
the micrometeorite hazard. Large chunks of materials are
inefficient as particle exhaustors because most paths through
them are longer than the distance required to stop a particle.
This leaves two efficient forms of matter distribution: as a
colloid or as thin sheets. Optical scattering effects of the
colloidal material may be objectionable for astronomical
observations. The authors consider that the best way to
orbit material for belt exhaustion would be as thin sheets of
solid material. Aluminum would be very suitable because
it is notably stable to ionizing radiation. The interference
with astronomical observations would be minimal; 10 tons of
0.05-g/cm2 sheet would have a maximum area of 20,000 m2,
or 10-4steradat500km. ! - • • - : .

1 Green, A. E. S., Nuclear Physics (McGraw-Hill Book Co-
Inc., New York, 1955), p. 233, Eq. 7-75. •


